Decomposition-based Failure Mode Identification Method for Risk-free Design in Large Systems
نویسندگان
چکیده
When designing products, it is crucial to assure failure and risk-free operation in the intended operating environment. Failures are typically studied and eliminated as much as possible during the early stages of design. The few failures that go undetected result in unacceptable damage and losses in high-risk applications where public safety is of concern. Published NASA and NTSB accident reports point to a variety of components identified as sources of failures in the reported cases. In previous work, data from these reports were processed and placed in matrix form for all the system components and failure modes encountered, and then manipulated using matrix methods to determine similarities between the different components and failure modes. In this paper, these matrices are represented in the form of a linear combination of failures modes, mathematically formed using Principal Components Analysis (PCA) decomposition. The PCA decomposition results in a low-dimensionality representation of all failure modes and components of interest, represented in a transformed coordinate system. Such a representation opens the way for efficient pattern analysis and prediction of failure modes with highest potential risks on the final product, rather than making decisions based on the large space of component and failure mode data. The mathematics of the proposed method are explained first using a simple example problem. The method is then applied to component failure data gathered from helicopter accident reports to demonstrate its potential. Corresponding author. Submitted for review, Journal of Mechanical Design .
منابع مشابه
Tackling uncertainty in safety risk analysis in process systems: The case of gas pressure reduction stations
Industrial plants are subjected to very dangerous events. Therefore, it is very essential to carry out an efficient risk and safety analysis. In classical applications, risk analysis treats event probabilities as certain data, while there is much penurious knowledge and uncertainty in generic failure data that will lead to biased and inconsistent alternative estimates. Then, in order to achieve...
متن کاملFailure Mode and Effects Analysis Using Generalized Mixture Operators
Failure mode and effects analysis (FMEA) is a method based on teamwork to identify potential failures and problems in a system, design, process and service in order to remove them. The important part of this method is determining the risk priorities of failure modes using the risk priority number (RPN). However, this traditional RPN method has several shortcomings. Therefore, in this paper we p...
متن کاملRobust Controller Design Based-on Aerodynamic Load Simulator Identification Driven by PMSM for Hardware-in-the-Loop Simulations
Aerodynamic load simulators generate the required time varying load to test the actuator’s performance in the laboratory. Electric Load Simulator (ELS) as one of variety of the dynamic load simulators should follows the rotation of the Under Test Actuator (UTA) and applies the desired torque to UTA’s rotor at the same time. In such a situation, a very large torque is imposed to the ELS from the...
متن کاملIdentifying Tools and Methods For Risk Identification and Assessment in Construction Supply Chain
The construction project is a business full of risk in every process due to its complexity, changes, and involvement from various stakeholders. One of the critical risks in the construction project is in the supply chain. Identifying and assessing the risk with the right tools and methods in that area will inevitably affect the success of the project. Unfortunately, the research for the tools a...
متن کاملA Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
متن کامل